Welcome to AP Calculus!

Graph of $f(x)$

A. Functional Values

$f(4)=$	$f(0)=$	$f(8)=$
$f(3)=$	$f(9)=$	$f(1)=$

What might $f(3)$ mean in the "real world"?
What is happening from $x=2$ to $x=5$?
B. Limits ($\lim _{x \rightarrow 3} f(x)$ means what does $f(x)$ get close to as x approaches 3)

$\lim _{x \rightarrow 3} f(x)=$	$\lim _{x \rightarrow 8} f(x)=$	$\lim _{x \rightarrow 7} f(x)=$
$\lim _{x \rightarrow 6} f(x)=$	$\lim _{x \rightarrow 0^{+}} f(x)=$	$\lim _{x \rightarrow 10^{-}} f(x)=$

As the time approaches 10 hours, what is Smiley Face's velocity?

C. Derivatives ($f^{\prime}(1)$ means find the rate of change at $\mathrm{x}=1$. In other words find the slope at 1 or the acceleration of Smiley Face at 1 hour.

$f^{\prime}(1)=$	$f^{\prime}(3)=$	$f^{\prime}(7)=$
$f^{\prime}(9)=$	$f^{\prime}(6)=$	${ }^{*} f^{\prime}(2)=$

What does $f^{\prime}(6)$ mean in the "real world"

What is Smiley Face's acceleration at $\mathrm{x}=3$?
D. Integrals ($\int_{2}^{5} f(x) d x$ means find the area under the graph of $\mathrm{f}(\mathrm{x})$ from $\mathrm{x}=2$ to x = 5. Hint: Direction matters)

$\int_{2}^{5} f(x) d x$	$\int_{0}^{2} f(x) d x$	$\int_{5}^{8} f(x) d x$
$\int_{8}^{10} f(x) d x$	$\int_{0}^{10} f(x) d x$	$* \int_{5}^{2} f(x) d x$

What does $\int_{2}^{5} f(x) d x$ mean in the "real world"?
How far does Smiley travel from $x=0$ to $x=10$?

