

Welcome to AP Calculus!

A. Functional Values

<i>f</i> (4) =	f(0) =	f(8) =
<i>f</i> (3) =	f(9) =	f(1) =

What might f(3) mean in the "real world"?

What is happening from x = 2 to x = 5?

B. Limits $(\lim_{x\to 3} f(x))$ m	eans what does f(x) get close to as	x approaches 3)
------------------------------------	--------------------	-------------------	-----------------

$\lim_{x\to 3} f(x) =$	$\lim_{x\to 8} f(x) =$	$\lim_{x\to 7} f(x) =$
$\lim_{x\to 6} f(x) =$	$\lim_{x\to 0^+} f(x) =$	$\lim_{x\to 10^-} f(x) =$

As the time approaches 10 hours, what is Smiley Face's velocity?

C. Derivatives (f'(1) means find the rate of change at x = 1. In other words find the slope at 1 or the acceleration of Smiley Face at 1 hour.

f'(1) =	f'(3) =	<i>f</i> ′(7) =
f'(9) =	f'(6) =	* f'(2) =

What does f'(6) mean in the "real world"

What is Smiley Face's acceleration at x = 3?

D. Integrals $(\int_{2}^{5} f(x) dx$ means find the area under the graph of f(x) from x = 2 to x = 5. Hint: Direction matters)

$\int_{2}^{5} f(x) dx$	$\int_0^2 f(x) dx$	$\int_{5}^{8} f(x) dx$
$\int_{8}^{10} f(x) dx$	$\int_0^{10} f(x) dx$	$*\int_{5}^{2}f(x)dx$

What does $\int_{2}^{5} f(x) dx$ mean in the "real world"?

How far does Smiley travel from x = 0 to x = 10?